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Dynamics of reentry around a circular obstacle in cardiac tissue
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~Received 11 February 1998; revised manuscript received 24 June 1998!

We studied the dynamics of a wave propagating around a circular obstacle in a two-dimensional cardiac
tissue model. By starting with a large obstacle and decreasing its radius, a continuous transition was created
between the two major types of reentrant cardiac arrhythmias: anatomical reentry~essentially one-dimensional!
and functional reentry. As the radius of the obstacle decreases, a sequence of transitions occurs, from periodic
motion to a modulated period-2 rhythm, and then to spiral wave breakup. These results may provide a useful
basis for refining cardiac ablation techniques currently in use.@S1063-651X~98!06311-9#

PACS number~s!: 87.10.1e, 05.45.1b, 87.22.As
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Reentrant excitation, in which a wave of excitation ‘‘r
enters’’ territory it has previously excited, is the leadin
mechanism of cardiac tachyarrhythmias. The first exp
mental model of reentry was generated by Mines@1# in a ring
of cardiac muscle derived from a dog heart.~A similar prepa-
ration was studied by Frame and Simson@2#.! Complex
structures in the heart, especially in the atria and atriov
tricular node, provide excellent substrates for this type
reentry, which can be modeled as a one-dimensional circ
pathway. One-dimensional reentry is also a useful model
reentry around circular obstacles, like those formed by
arct scars. But not all reentry can be simplified to the o
dimensional model: the experiments of Allessie’s group@3#
have demonstrated that reentry can occur without an obs
or other anatomically defined path. This kind of reentry h
been shown experimentally to consist of spiral or scr
waves@4,5# in accord with nonlinear theory@6–8#, and re-
quires at least a two-dimensional excitable medium to sim
late. The 1D case is now referred to as ‘‘anatomical reent
and the higher-dimensional~2D or 3D! as ‘‘functional reen-
try.’’ The case of reentry around an obstacle is a kind
intermediate case.

Experiments on reentry around an obstacle in cardiac
sue @1,2,9# showed that reducing the obstacle size or p
longing the wavelength promoted complex oscillations, c
duction failure, and complex spiral wave behavio
Experiments studying chemical waves in CO oxidation in
annular domain showed that complex behaviors occur
larger rings@10#, they also found that the frequency of
spiral wave in a circular domain depends on domain s
@10#. Simulations in excitable media with circular domai
@11,12# and in rings of cardiac cells@13# showed that the
rotating frequency and pulse behaviors were size depend
In this paper, we study cardiac propagation in a 2D circu
domain with a circular obstacle~a hole with no-flux bound-
ary! in the center. By shrinking the radius of the hole, we c
continuously change the system from a 1D ring to 2D tis
with an obstacle, and finally to homogeneous 2D tissue. W
this protocol, we can study the relation between the t
types of reentry, and between 1D dynamics and 2D dyn
ics.

Ignoring the microscopic cell structure, electrical impul
conduction in cardiac tissue can be described by the pa
differential equation
PRE 581063-651X/98/58~5!/6355~4!/$15.00
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]V/]t52I ion /Cm1D¹2V, ~1!

whereV is the membrane voltage (mV), Cm51 mF cm22 is
the membrane capacitance, andD51 cm2/s is the diffusion
coefficient.I ion5I Na1I si1I K1I K11I Kp1I b is the total cel-
lular transmembrane ionic current density from the Lu
Rudy ventricular action potential model@14#. I Na

5ḠNam
3h j(V254.4) is the fast inward Na1 current; I si

5Ḡsid f(V2Esi) is the slow inward Ca21 current; I K

5ḠKxx̄(V277) is the time-dependent outward K1 current;
I K1 , I Kp , and I b , which are solely functions ofV, are the
time-independent outward K1 current, plateau K1 current,
and background current, respectively.m, h, j , d, f , andx
are gating variables, all governed by the same type of o
nary differential equation. For details of the equations a
functions see Ref.@14#. In our simulations we setḠNa

523 mS/mF, ḠK50.705 mS/mF, Ḡsi50.07 mS/mF. To
solve Eq.~1! in a 2D circular domain, we integrated it in
polar coordinate system with no-flux boundary conditions
both boundaries:]V/]r ur 5R5]V/]r ur 5r 0

50, whereR is the

domain radius andr 0 the obstacle radius. Whenr 050, the
system becomes 2D homogeneous tissue, and whenr 05R, it
collapses into a one-dimensional ring. Because of the s
ness of the upstroke of the action potential, a very small ti
step must be used to integrate Eq.~1!. To overcome this
disadvantage, we split the reaction operator and the diffus
operator in Eq.~1! using the well-known operator-splitting
method@16#. We then integrated the reaction term using
second-order Runge-Kutta method with an adaptive ti
step that depends on the derivative of voltage, and the di
sion term with an alternating-direction implicit method
guarantee numerical stability. In this study, the adaptive ti
step varied fromDtmin50.01 ms toDtmax50.2 ms. The
diffusion term was integrated with the maximum time st
Dt5Dtmax50.2 ms to keep all cells synchronized. Nume
cal simulation@15# showed that whenDtmax50.01 ms to
Dtmax50.2 ms, the relative error was less than 2%. T
space steps areDu52p/1000, andDr 50.02 cm. Because
we use an implicit method, numerical stability is maintain
even for very smallr 0 . When r 050, the center point be-
comes a singularity in the polar discretization system, a
6355 © 1998 The American Physical Society
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we use in its place the average value of its 1000 immedia
surrounding neighbors. This gives the correct action pot
tial of the center point. Since we are studying the stability
reentry around an obstacle, we always initiate the spiral w
near the obstacle by two perpendicular waves. If the sp
waves are initiated far away from the obstacle bounda
more complex behaviors can exist.

The dynamical properties of this system depend hea
on R and r 0 . Fig. 1 shows a set of simulation results f
different r 0 but fixed R(59.2 cm). Without an obstacle
(r 050), a spiral wave initiated by two successive perpe
dicular waves breaks up into fibrillatory like motion aft
several rotations, as has been shown to occur in normal
diac tissue@5#. A snapshot of the disordered spatial distrib
tion of voltage in this state is shown in Fig. 1~a!. The corre-
sponding Poincare´ return map for the action potentia
duration~A! @17#, shown in Fig. 1~e!, indicates that the sys
tem is in high-dimensional chaos. Now we place an obsta
in the tissue, i.e., we increaser 0 from zero. If the obstacle is
small, the behavior of the system is like that forr 050: an
initiated spiral wave breaks up into fibrillatory like motio
after several rotations. Figures. 1~b! and 1~f! show a voltage
snapshot and action potential duration return map. Note
they resemble the case without an obstacle. But asr 0 is
increased beyond a critical value (r 0c1'1.44 cm), the be-
havior of the system abruptly changes. An initiated sp
wave does not break up; instead it attaches~‘‘anchors’’! to
the obstacle. In fact, the curved, propagating wave is
longer a true spiral wave, since it lacks a tip. The dynamic
no longer chaotic but quasiperiodic. A quasiperiodic wa
anchored to an obstacle is shown in Fig. 1~c! and its action
potential duration return map is shown in Fig. 1~g!. As the
radius of the obstacle is increased beyond another cri
value (r 0c2'2.35 cm), another transition occurs, as t
quasiperiodicity is abruptly replaced by a period-1 motio
Figures 1~d! and ~h! show a periodic anchored wave and
action potential duration return map.

We then explored parameter space by varying bothR and
r 0 . Figure 2 shows the phase diagram of the system in

FIG. 1. A sequence of transitions, from fibrillationlike activit
to a periodic anchored spiral wave, as the obstacle radiusr 0 in-
creases, for a fixedR59.2-cm outer radius.~a!–~d! Voltage snap-
shots~voltage values decreasing from white to black! in the tissue
for ~a! r 050.0 cm; ~b! r 051.20 cm; ~c! r 051.60 cm; ~d! r 0

52.50 cm. Note the transition from a multispiral state to a sin
anchored spiral.~e!–~h! Action potential duration~A! return maps
corresponding to~a!–~d!, respectively. Note the transition from
high-dimensional to quasiperiodic to periodic behavior.
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r 0-DR parameter plane (DR5R2r 0). It consists of four re-
gions: stable period-1 (P1) conduction, quasiperiodic~QP!
alternans ~a period-2 rhythm amplitude modulated at
longer period!, spiral wave breakup~Breakup!, and complete
conduction failure (F). The critical line between spiral wav
breakup and conduction failure is r 01DR5r 0c1

'1.20 cm, which is the critical point~corresponding to ring
length;7.5 cm) for conduction failure in the 1D ring.

A surprising and interesting result is that the critic
curves distinguishing breakup from QP, and QP from P1,
nearly vertical except near values ofR'r 0 . This means that
no matter how large the tissue sizeR is, the dynamics of the
system is almost entirely determined byr 0 , except for the
boundary between the failure and breakup regions.This is
because r0 largely determines cycle length (the period of t
wave, T) for sufficiently large r0 , and T largely determines
the dynamics.

To better understand the results shown in Fig. 2, let
first summarize the known results from ring simulation
which corresponds toR5r 0 in our case. Studies@13# have
shown that the dynamics in the ring depends on both ac
potential duration and conduction velocity~C! restitution
properties, and on the ring lengthL(52pR52pr 0). If the
slope of the action potential duration restitution curve~at the
equilibrium state! is less than1, the system is stable, an
propagation will be periodic if the ring is long enough,
else it will fail. But if the slope of the action potential dura
tion restitution curve is greater than1 at the equilibrium
state, propagation can be persistent yet unstable. For a r
of values ofL, the system will display quasiperiodic motion
modulated alternans~period-2 rhythm!, while if L is too
short, conduction failure occurs. In a ring,L selects the basic
rotation frequency; the steepness of the action potential
ration restitution causes the cycle-length-dependent insta
ity and thus the alternans, and conduction velocity restitut
selects the modulation frequency~quasiperiodicity! @13#. In
our simulations, the ring corresponds to small values ofDR;
a path traversed at lowDR from large r 0 to small, corre-
sponding to going from largeL to small in a ring, reproduces
the behavior previously seen in the ring: from period-1
modulated~quasiperiodic! alternans, and then to conductio
failure.

The 2D simulation diverges from the ring model asDR
becomes significantly nonzero. To study the 2D case, we

e

FIG. 2. ~a! Schematic of the cardiac tissue.~b! Phase diagram in
the r 0–DR plane.P1, period-1 anchored wave; QP, quasiperiod
anchored wave; Breakup, spiral wave breakup;F, failure of wave
propagation.
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PRE 58 6357DYNAMICS OF REENTRY AROUND A CIRCULAR . . .
start with R5r 0 sufficiently large that the propagation
periodic, and then progressively reducer 0 to make the sys-
tem truly 2D.

The first phenomenon that is encountered asr 0 shrinks
away fromR is the appearance of wave-front curvature. A
consequence of the no-flux boundary condition, the w
front must be perpendicular to both boundaries. But a co
pletely rectilinear wave front cannot exist here, becausT
52pr 0 /Cr 0

52pR/CR must be satisfied to have a uniqueT

in the system. Only a curved wave front can meet this
quirement. According to the eikonal relationC5C02Dk,
positive curvature must form atr 0 and negative curvature
must form atR to fulfill the cycle length requirement. Due t
the curvature effect, the system will select aT that is longer
than that of a ring withL52pr 0 but shorter than that of a
ring with L52pR.

If r 0 is further shortened tor 0c2 to select aT for which the
slope of action potential duration restitution is greater than1,
then the propagating wave will begin to oscillate in mod
lated alternans. IfDR is large enough, this oscillation will be
desynchronized in space and will make the wave back s
loped @Fig. 1~c!#. Finally, if r 0 is further shortened tor 0c1 ,
selecting aT for which conduction failure occurs due t
wave back scalloping, then spiral breakup takes place
those failure points. This creates spatiotemporally cha
motion.

Although theT, and thus the stability of the circulatin
wave, is mostly determined by the radiusr 0 of the obstacle,
the boundary lines in Fig. 2 are not completely vertical,
dicating a small effect ofDR. This can be understood as du
to the effects of curvature. AsDR grows from 0, the pres-
ence of curvature in the wave front implies, by the eikon
relation, that the wave speed will be lower than that in
DR50 case. Lowered wave speed by itself would imply th
the wave was made more stable by the presence ofDR,
which is the opposite of what is seen in Fig. 2. The li
separating periodic and quasiperiodic, and the line separa
quasiperiodic and breakup, shifts to the right asDR gets
larger, indicating that for largerDR, the wave is less stable
because instability comes at higher values ofr 0 . The expla-
nation for this effect is that, as discussed above, the no-
boundary condition requires the wave to be perpendicula
the boundaries, which in turn requires the wave to ha
negative curvature at the outer boundaryR. Although the
positive curvature near the obstacle has a stabilizing ef
on the action potential duration restitution curve@18#, the
negative curvature at the outer boundary has the oppo
effect. Figure 3 shows plots ofAn versusI n (I n is defined as
Tn2An) near the obstacle@~a!, open circles# and near the
boundary@~b!, closed circles# just after the onset of quasip
eriodicity. Note that the oscillation near the outer bound
is larger than that near the obstacle. This causes the s
wave instability to first develop at the outer boundary, th
propagate inward.

To give a quantitative view of these results, Fig. 4 sho
the maximum and minimum values ofA, and the average
cycle length (̂T&), versusr 0 , from simulations of the ring
and 2D tissue. First, note the first bifurcation that occurs
r 0 decreases. This is the bifurcation to quasiperiodic alte
ans. This bifurcation was observed by several authors@13#.
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Note also that for decreasingr 0 , the bifurcations in 2D occur
sooner than they do in the ring, which is the result expec
from our argument above. Second, the oscillation amplitu
is slightly larger, and̂T& is slightly longer, in 2D than in the
ring. The increase in maximumA and decrease of minimum
A are due to the instability fromR, but the increasing of̂T&
is due to the slowing down of the wave front atr 0 . Third,
sudden transitions occur in bothA and ^T& at the second
bifurcation point in 2D, i.e., the transition from QP t
breakup;̂ T& remains unchanged asr 0 decreases beyond th
transition point. These results differ from previous stud
@11,12# in which reentry is always stable for decreasingr 0 ,
and in which the cycle length versusr 0 is continuous, and
decreases continuously with decreasingr 0 until a minimum
value is reached. The discontinuity in our simulation occ
because spiral breakup occurs, and once spiral breakup t
place somewhere in the tissue, the cycle length of the ne
formed spiral wave will be selected by its own dynami
rather than by the obstacle. Thus, when the system deve
into fully developed spatiotemporal chaos, a number
wavelets meander through the tissue, and no wave ancho
the obstacle. In this case, the obstacle has lost its influe
on the wave rotation frequency. The average cycle len
therefore changes abruptly, and is thereafter unaffected
the presence or absence of small obstacles.

In conclusion, we explored the dynamical relation
propagation in a 1D ring and in 2D tissue with an obstac

FIG. 3. An vs I n plots near the obstacle@~a!, open circles# and
the outside boundary@~b!, closed circles# for R59.2 cm, r 0

52.32 cm. A schematic wave front is shown at the lower rig
~curvature is exaggerated!.

FIG. 4. Bifurcations produced by changingr 0 both in the ring
~solid lines! and in 2D tissue~open circles! ~outerR59.2 cm).~a!
The minimum and maximumA vs r 0 . ~b! AverageT vs r 0 .
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We saw a transition from periodic to quasiperiodic moti
via Hopf bifurcation, as was seen in the ring, and a transit
to spiral wave breakup and spatiotemporal chaos in 2D tis
corresponding to conduction failure in the ring. The mec
nism of spiral wave breakup and the transition to spatiote
poral chaos in homogeneous tissue was also studied in R
@7,18#, but the strategy there was to alter action poten
duration restitution. Here, by keeping the same action pot
tal duration restitution, but changing the obstacle radius~and
thus the cycle length!, we again found spiral wave breaku
and a transition to spatiotemporal chaos. The two strate
can be unified by the observation that for a given act
potential duration restitution curve, the cycle length det
mines where on the curve the system will fall, and hence
stability. For a sufficiently large cycle length, forced by
sufficiently large obstacle, the system will be pushed to
flat part of the restitution curve, resulting in stable condu
tion.

This study gives a mechanism for spiral wave anchori
a phenomenon well known in real cardiac tissue@9#. Anchor-
ing, we suggest, is due to the stabilizing effect of increa
c-
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cycle length due to a sufficiently large obstacle. Our simu
tions have the surprising consequence thata sufficiently
large obstacle in a tissue tends to make reentry more sta,
in contrast to the conventional cardiologic wisdom that o
stacles tend to cause breakup. We find that an anatomic
reentrant wave is more stable than the corresponding fu
tionally reentrant wave in the same tissue.

Our study has implications for the clinical procedures c
rently used to prevent fibrillation. One of the standard cli
cal procedures for patients with atrial fibrillation is cathe
ablation, in which lines or arcs of nonconducting lesions
created to confine cardiac wave propagation. Our study
fines a rational basis for this procedure, and provides a
terion for how large the lesions must be to prevent the sp
breakup that drives fibrillation.

This work was supported by NIH Grant No. P5
HL52319, and by the American Heart Association, Grea
Los Angeles Affiliate~F.X. & Z.Q.!. We thank Dr. James N
Weiss for helpful conversations.
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