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Dynamics of reentry around a circular obstacle in cardiac tissue
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We studied the dynamics of a wave propagating around a circular obstacle in a two-dimensional cardiac
tissue model. By starting with a large obstacle and decreasing its radius, a continuous transition was created
between the two major types of reentrant cardiac arrhythmias: anatomical reesseptially one-dimensional
and functional reentry. As the radius of the obstacle decreases, a sequence of transitions occurs, from periodic
motion to a modulated period-2 rhythm, and then to spiral wave breakup. These results may provide a useful
basis for refining cardiac ablation techniques currently in [82063-651X98)06311-9

PACS numbd(s): 87.10+e€, 05.45+b, 87.22.As

Reentrant excitation, in which a wave of excitation “re- VI gt=—1,41/Cyt DV2V, (1)
enters” territory it has previously excited, is the leading
mechanism of cardiac tachyarrhythmias. The first experi-
mental model of reentry was generated by Mifldsn aring ~ whereV is the membrane voltagenV), C,,=1 puFcm “is
of cardiac muscle derived from a dog heé#t.similar prepa-  the membrane capacitance, dde-1 cn¥/s is the diffusion
ration was studied by Frame and Simsf.) Complex  coefficient.ligy=1Iyat s+ I+ g1+ 1kp+ 1y is the total cel-
structures in the heart, especially in the atria and atrioventular transmembrane ionic current density from the Luo-
tricular node, provide excellent substrates for this type ofRudy ventricular action potential model[14]. Iy,
reentry, which can be modeled as a one-dimensional circulac 5 mPhj(V—54.4) is the fast inward Na current; I
pathway. One-dimensional reentry is also a useful model for =2 .' . N oS
reentry around circular obstacles, like those formed by inf-— Csdf(V—Es) is the slow inward Ca current; I
arct scars. But not all reentry can be simplified to the one=Gyxx(V—77) is the time-dependent outward" kKurrent;
dimensional model: the experiments of Allessie’s gr¢8p k1, Ikp, andl,, which are solely functions o¥, are the
have demonstrated that reentry can occur without an obstactane-independent outward K current, plateau K current,
or other anatomically defined path. This kind of reentry hasand background current, respectively, h, j, d, f, andx
been shown experimentally to consist of spiral or scrollare gating variables, all governed by the same type of ordi-

waves[4,5] in accord with nonlinear theorf6—8|, and re-  nary differential equation. For details of the equations and
quires at least a two-dimensional excitable medium to SIMUz | ctions  see Ref[14]. In our simulations we seg,\,
. a

late. The 1D case is now referred to as “anatomical reentry”
=23 mSuF, Gx=0.705 mSLF, G;=0.07 mSikF. To

and the higher-dimension&D or 3D) as “functional reen- . . - 8 L
try.” The case of reentry around an obstacle is a kind ofSolve Eq.(1) in a 2D circular domain, we integrated it in a

intermediate case. polar coordinate system with no-flux boundary conditions at
Experiments on reentry around an obstacle in cardiac tis20th boundariessV/or | _g=dV/dr|,— =0, whereR s the
sue[1,2,9 showed that reducing the obstacle size or pro-domain radius and, the obstacle radius. Whemy=0, the
longing the wavelength promoted complex oscillations, consystem becomes 2D homogeneous tissue, and wjeR, it
duction failure, and complex spiral wave behaviors.collapses into a one-dimensional ring. Because of the stiff-
Experiments studying chemical waves in CO oxidation in amness of the upstroke of the action potential, a very small time
annular domain showed that complex behaviors occur irstep must be used to integrate Ed). To overcome this
larger rings[10], they also found that the frequency of a disadvantage, we split the reaction operator and the diffusion
spiral wave in a circular domain depends on domain sizeperator in Eq(1) using the well-known operator-splitting
[10]. Simulations in excitable media with circular domains method[16]. We then integrated the reaction term using a
[11,12 and in rings of cardiac cellg13] showed that the second-order Runge-Kutta method with an adaptive time
rotating frequency and pulse behaviors were size dependerstep that depends on the derivative of voltage, and the diffu-
In this paper, we study cardiac propagation in a 2D circulaision term with an alternating-direction implicit method to
domain with a circular obstacl@ hole with no-flux bound- guarantee numerical stability. In this study, the adaptive time
ary) in the center. By shrinking the radius of the hole, we canstep varied fromAt.;;=0.01 ms toAt.,=0.2 ms. The
continuously change the system from a 1D ring to 2D tissugliffusion term was integrated with the maximum time step
with an obstacle, and finally to homogeneous 2D tissue. Witl\t=At,,=0.2 ms to keep all cells synchronized. Numeri-
this protocol, we can study the relation between the twccal simulation[15] showed that whemt,,,,=0.01 ms to
types of reentry, and between 1D dynamics and 2D dynamAt,,,,=0.2 ms, the relative error was less than 2%. The
ics. space steps ar& #=2m/1000, andAr=0.02 cm. Because
Ignoring the microscopic cell structure, electrical impulsewe use an implicit method, numerical stability is maintained
conduction in cardiac tissue can be described by the partiaven for very smallr,. Whenry=0, the center point be-
differential equation comes a singularity in the polar discretization system, and
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ther,—AR plane.P1, period-1 anchored wave; QP, quasiperiodic
FIG. 1. A sequence of transitions, from fibrillationlike activity @nchored wave; Breakup, spiral wave breakiipfailure of wave
to a periodic anchored spiral wave, as the obstacle ragjus- ~ Propagation.
creases, for a fixe®=9.2-cm outer radiusia)—(d) Voltage snap-
shots(voltage values decreasing from white to blagk the tissue

for (a) ro=0.0 cm: (b) ro=1.20 cm: (¢) ro=1.60 cm: (d) ro ro-AR parameter planeAR=R—r). It consists of four re-

=2.50 cm. Note the transition from a multispiral state to a singleglonS: stable perlod—lF(l) conducthn, quasiperiodicQp)
anchored spiral(e)—(h) Action potential duratior(A) return maps alternans (_a perl_od-2 rhythm amplitude modulated at a
corresponding tol@—(d), respectively. Note the transition from lONger period, spiral wave breakufBreakup, and complete
high-dimensional to quasiperiodic to periodic behavior. conduction failure ). The critical line between spiral wave
breakup and conduction failure isrg+AR=rq
we use in its place the average value of its 1000 immediately=1.20 cm, which is the critical poir{torresponding to ring
surrounding neighbors. This gives the correct action potenlength~7.5 cm) for conduction failure in the 1D ring.
tial of the center point. Since we are studying the stability of A surprising and interesting result is that the critical
reentry around an obstacle, we always initiate the spiral waveurves distinguishing breakup from QP, and QP from P1, are
near the obstacle by two perpendicular waves. If the spirahearly vertical except near valuesR&r,. This means that
waves are initiated far away from the obstacle boundarypno matter how large the tissue sids, the dynamics of the
more complex behaviors can exist. _system is almost entirely determined by, except for the
The dynamical properties of this system depend heavily,, nqary between the failure and breakup regiditss is
on Randr,. Fig. 1 shows a set of simulation results for o5 56 ¢ largely determines cycle length (the period of the

different ro bgt fixed R(.='9.2 cm). Without an obstacle wave, 1) for sufficiently large g, and T largely determines
(ro=0), a spiral wave initiated by two successive perpeny, dynamics

dicular waves breaks up into fibrillatory like motion after To better understand the results shown in Fig. 2, let us

several rotations, as has been shown to occur in normal Caﬁ}st summarize the known results from ring simulations
diac tissug5]. A snapshot of the disordered spatial distribu- " °. _ 9 '
which corresponds t&®=r, in our case. Studiegl3] have

tion of voltage in this state is shown in Fig(@. The corre- 0 . .
sponding Poincérereturn map for the action potential shown that the dynamics in the ring depends on both action

duration(A) [17], shown in Fig. {e), indicates that the sys- potentigl duration and ponduction velocit) restitution
tem is in high-dimensional chaos. Now we place an obstacl@roperties, and on the ring length(=27R=21r,). If the
in the tissue, i.e., we increasg from zero. If the obstacle is Slope of the action potential duration restitution cufaethe
small, the behavior of the system is like that fge=0: an equilibrium state is less thanl, the system is stable, and
initiated spiral wave breaks up into fibrillatory like motion Propagation will be periodic if the ring is long enough, or
after several rotations. Figuregbl and Xf) show a voltage else it will fail. But if the slope of the action potential dura-
snapshot and action potential duration return map. Note thdton restitution curve is greater thah at the equilibrium
they resemble the case without an obstacle. Bur@ass  state, propagation can be persistent yet unstable. For a range
increased beyond a critical valuey{;~1.44 cm), the be- of values ofL, the system will display quasiperiodic motion,
havior of the system abruptly changes. An initiated spiralmodulated alternangperiod-2 rhythm, while if L is too
wave does not break up; instead it attacti&sichors”) to  short, conduction failure occurs. In a ririgselects the basic
the obstacle. In fact, the curved, propagating wave is naotation frequency; the steepness of the action potential du-
longer a true spiral wave, since it lacks a tip. The dynamics isation restitution causes the cycle-length-dependent instabil-
no longer chaotic but quasiperiodic. A quasiperiodic wavety and thus the alternans, and conduction velocity restitution
anchored to an obstacle is shown in Fi¢c)land its action selects the modulation frequenégyuasiperiodicity [13]. In
potential duration return map is shown in Figgll As the  our simulations, the ring corresponds to small values &f
radius of the obstacle is increased beyond another critical path traversed at loxR from largery to small, corre-
value (rqo:2~2.35 cm), another transition occurs, as thesponding to going from large to small in a ring, reproduces
quasiperiodicity is abruptly replaced by a period-1 motion.the behavior previously seen in the ring: from period-1 to
Figures 1d) and (h) show a periodic anchored wave and its modulated(quasiperiodig alternans, and then to conduction
action potential duration return map. failure.

We then explored parameter space by varying tbo#nd The 2D simulation diverges from the ring model AR
ro. Figure 2 shows the phase diagram of the system in thbecomes significantly nonzero. To study the 2D case, we will
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start with R=r sufficiently large that the propagation is 170
periodic, and then progressively redugeto make the sys-
tem truly 2D. i
The first phenomenon that is encounteredr gshrinks 150
away fromR is the appearance of wave-front curvature. As a )
consequence of the no-flux boundary condition, the wave E i
front must be perpendicular to both boundaries. But a com- <130L
pletely rectilinear wave front cannot exist here, becalise
=2mto/C; =2mR/Cr must be satisfied to have a uniglie -
in the system. Only a curved wave front can meet this re- 110 ; 1 . 1 .
guirement. According to the eikonal relatid®= Cy—D«, 90 110 130 150
positive curvature must form at, and negative curvature I, (ms)
must form atR to fulfill the cycle length requirement. Due to
the curvature effect, the system will selecT ghat is longer FIG. 3. A, vs I, plots near the obstacléa), open circle$ and
than that of a ring with. = 27, but shorter than that of a the outside boundary(b), closed circle for R=9.2 cm, ro
ring with L=27R. =2.32 cm. A schematic wave front is shown at the lower right

If rg is further shortened toy,, to select a for which the (curvature is exaggerated

slope of action potential duration restitution is greater than
then the propagating wave will begin to oscillate in modu-
lated alternans. IAR is large enough, this oscillation will be
desynchronized in space and will make the wave back sca
loped[Fig. 1(c)]. Finally, if rq is further shortened tog.,
selecting aT for which conduction failure occurs due to . i . :
wave bgck scalloping, then spiral breakup takes place é%are due to the |n§tabll|ty fro, but the increasing O(.m
those failure points. This creates spatiotemporally chaotit® due to the _s_lowmg dow_n of the wave frontr. Third,
motion. sudden transitions occur in both and (T) at the second

Although theT, and thus the stability of the circulating Eifuriati(?n point ,i” 2D,hi.e., t(?e t(rjansition frgm QOIID ;0
wave, is mostly determined by the radiusof the obstacle, rea_gp,(T) _reme_:_lrr:s unc anlge d'?f§ icreases oeyon td_e
the boundary lines in Fig. 2 are not completely vertical, in-Iransition point. These results diifer from previous studies

dicating a small effect oAR. This can be understood as due [11,13 in which reentry is always stable for decreasing

to the effects of curvature. AAR grows from 0, the pres- and in which th.e cycle 'e’_‘gth Versug s colntinuqu_s, and
ence of curvature in the wave front implies, by the eikonaldecréases continuously with decreasigguntil a minimum

relation, that the wave speed will be lower than that in thevalue is reached. The discontinuity in our simulation occurs

AR=0 case. Lowered wave speed by itself would imply th‘,ﬂbecause spiral breakup occurs, and once spiral breakup takes
the wave was made more stable by the presencaRf place somewhere in the tissue, the cycle length of the newly
which is the opposite of what is seen in Fig. 2. Thel Iineformed spiral wave will be selected by its own dynamics
separating periodic and quasiperiodic, and the line separatifgtne' than by the obstacle. Thus, when the system develops

quasiperiodic and breakup, shifts to the right &R gets into fully developed spatiotemporal chaos, a number of
larger, indicating that for largekR, the wave is less stable, wavelets meander through the tissue, and no wave anchors to

because instability comes at higher values gf The expla- the obstacle. In this case, the obstacle has lost its influence
nation for this effect is that, as discussed above, the no-flu n the wave rotation frequency. The average cycle length

boundary condition requires the wave to be perpendicular tgjerefore changes abruptly, and is thereafter unaffected by

the boundaries, which in turn requires the wave to hav elnpreS(ra]nlce iornat\);enci (IJfrsrgatllhobzta:]cI?r'lsi. | relation of
positive curvature near the obstacle has a stabilizing effedt’OPad 9 '

on the action potential duration restitution curMi8], the

Note also that for decreasimg, the bifurcations in 2D occur
sooner than they do in the ring, which is the result expected
from our argument above. Second, the oscillation amplitude
Is slightly larger, andT) is slightly longer, in 2D than in the
ring. The increase in maximui and decrease of minimum

negative curvature at the outer boundary has the opposit 200 @ 300 ®

effect. Figure 3 shows plots éf, versusl, (I, is defined as [ - 000-0 <0, —~ 250F

T,—A,) near the obstacl§a), open circle$ and near the 1501 g

boundary[(b), closed circlebjust after the onset of quasip- @ [ ~ 2001

eriodicity. Note that the oscillation near the outer boundaryg,wo_' COLA 150'_

is larger than that near the obstacle. This causes the spir<C 5ok O I :

wave instability to first develop at the outer boundary, then I ; V' qgpfeerocerere oot

prOpagate InWard- OLT-O:O?O..O?O.OG;I PR -I PR S SR P | I n
To give a quantitative view of these results, Fig. 4 shows 00 05 1.0 15 20 25 500,0 05 1.0 15 20 25

the maximum and minimum values &, and the average r, (cm) A (cm)

cycle length (T)), versusrq, from simulations of the ring

and 2D tissue. First, note the first bifurcation that occurs as FIG. 4. Bifurcations produced by changing both in the ring
ro decreases. This is the bifurcation to quasiperiodic altern¢solid lineg and in 2D tissudopen circles (outerR=9.2 cm).(a)
ans. This bifurcation was observed by several authb8  The minimum and maximum vsr,. (b) AverageT vsr,.
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We saw a transition from periodic to quasiperiodic motioncycle length due to a sufficiently large obstacle. Our simula-
via Hopf bifurcation, as was seen in the ring, and a transitiortions have the surprising consequence thasufficiently

to spiral wave breakup and spatiotemporal chaos in 2D tissularge obstacle in a tissue tends to make reentry more stable
corresponding to conduction failure in the ring. The mechain contrast to the conventional cardiologic wisdom that ob-
nism of spiral wave breakup and the transition to spatiotemstacles tend to cause breakup. We find that an anatomically

poral chaos in homogeneous tissue was also studied in Reigentrant wave is more stable than the corresponding func-
[7,18], but the strategy there was to alter action potentiakionally reentrant wave in the same tissue.

duration restitution. Here, by keeping the same action poteni- o study has implications for the clinical procedures cur-

tal duration restitution, but changing the obstacle radumsl
thus the cycle lengih we again found spiral wave breakup

and a transition to spatiotemporal chaos. The two strategi
can be unified by the observation that for a given actio

stability. For a sufficiently large cycle length, forced by a
sufficiently large obstacle, the system will be pushed to th

rently used to prevent fibrillation. One of the standard clini-
cal procedures for patients with atrial fibrillation is catheter

ﬁz?olation, in which lines or arcs of nonconducting lesions are

created to confine cardiac wave propagation. Our study de-

fines a rational basis for this procedure, and provides a cri-

Yerion for how large the lesions must be to prevent the spiral
ebreakup that drives fibrillation.

flat part of the restitution curve, resulting in stable conduc-

tion.
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